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ON THE CONVERGENCE OF A SEQUENTIAL qUADRATIC
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Department of Operations Research
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Stanford, CA 94305

January 1982

ABSTRACT

Sequential quadratic programming methods as developed by Wilson, Han, and Powell have
gained considerable attention in the last few years mainly because of their outstanding numeri-
cal performance. Although the theoretical convergence aspects of this method and its various
modifcations have been investigated in the literature, there still remain some open questions
which will be treated in this paper. The convergence theory to be presented, takes into account
the additional variable introduced in the quadratic programming subproblem to avoid inconsis-
tency, the one-dimensional minimization procedure, and, in particular, an 'active set' strategy
to avoid the recalculation of unnecessary gradients. This paper also contains a detailed mathe-
matical description of a nonlinear programming algorithm which has been implemented by the
author. The usage of the code and detailed numerical test results are presented in 1151.

This research was supported by the Deutsche Forschungsgemeinschaft while the author was
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ntroduction

1. Introductdon

Consider the general nonlinear optimisation problem

minimise 1(z)
x E R : g,(z) = 0, =,...,m,, (I)

1j(Z) > 0, ,+ ,.,

with continuously differentiable functions f and gj, j - 1,..., m. One of the most effective tools
available today for solving (1), is the sequential quadratic programming algorithm as developed
by Wilson (16], Han [6], and Powell [10]. In this method, a line search is performed along a
search direction obtained by solving a quadratic programming subproblem. The algorithmic (see
Han [51, Powell [111) and numerical (see [12]) behaviour of the method have been examined and
various modifications have been proposed to overcome certain difficulties. For example, the line
search procedure may impede superlinear convergence (see Maratos [9]), and the algorithm may
cycle (see Chamberlain [2]). One possible remedy (see [13]) is to replace the non-differentiable L1-
line search function used by Han and Powell by a differentiable augmented Lagrange function.
However, the convergence analysis of the original method and of the above modification is based
on some assumptions which are often not satisfied in practice and there are a few additional
numerical drawbacks:
1. All convergence proofs known so far to the author, assume that every quadratic subproblem is
feasible. However, this assumption is not always satisfied and Powell [10] proposed the introduc-
tion of an additional variable in the subproblem to guarantee consistency. It will be shown that
the resulting algorithm will converge if the corresponding penalty parameter is sufficiently large.
A lower bound for the choice of this penalty parameter is given.
2. The convergence proof of Han [6] is based on an Armijo-type line search procedure. However,
this could lead to an inefficient algorithm and Powell [10] proposed a combination of the Armijo-
type line search with a quadratic approximation. This modification leads to a slight alteration of
the existing convergence proof.
3. A numerical drawback of the method of Wilson, Han, and Powell is the unnecessary calculation
of the gradients of constraints which are inactive at the optimal solution. The experimental
tests of [14,151 show that an "active set" strategy can lead to a considerable saving of gradient
calculations. It remains to be seen whether it is possible to prove the convergence of the resulting
algorithm.
4. The augmented Lagrange function defined in (13] for the line search calculation uses one
monotone increasing penalty parameter for all constraints. To improve the robustness of the &I-
gorithm, the penalty parameters are now chosen individually for each constraint, their calculation
is simplified, and they are allowed to decrease at the beginning of the algorithm.
5. Any sequential quadratic programming algorithm will have difficulties in finding a suitable
descent direction for the line search function, if the quadratic subproblem does not satisfy
a constraint qualification. A remedy will be proposed in this paper based on an augmented
Lagrangian type search direction.

Point 3 mentioned above, is of special importance. One of the basic open questions in non-
linear programming is whether an active set strategy leading to equality constrained subproblems,
will be superior to a sequential quadratic programming algorithm with inequality constraints, or
vice versa. It is likely that only a combination of both approaches will lead to an efficient, robust,
and generally applicable algorithm, and one could consider the proposed 'active set' modification
as a first approach in finding a suitable compromise.

'i



2 Coevace of a sequential quadratic ~oamming method

In Section 2 of the Paper, the augmented Lagrangan line search fucton and the quadratic
subproblem are domted. The algorithm is outlined in Section 3 together with some implementation
remark.. Section 4 contains the global convergence analysis and further remark. ane given in
Section 5.



Basic concepts

2. auk onepts

An important tool in nonlinear programming is the Lagrange function
M

L(z, u) = (z) - ujig(x) (2)
j-i

with z E W", u = (u,, un)r E 3", which is involved in the well-known necessary optimality
conditions, i.e. the Kuhn-Tucker conditions for problem (1)

a) V.L(z, u) 0,
b) gj(z) =O, j=1,..m.,
c) g(z) o, j=m. + 1,..., m, (3)
d) uj _t> 0, =m. + 1.,m,

e) gj(z)u, = 0, j = m+1,...,m.

Here, V. denotes differentiation with respect to the z-variables. A sequential quadratic
programming algorithm proceeds from a quadratic approximation of the Lagrange function (2)
and a linearization of the constraints. If z, denotes the k-th estimate for the optimal solution and
B5 a symmetric matrix that approximates the Hessian of the Lagrange function, the resulting
quadratic programming subproblem can be written in the form

minimize dTBtd + Vf(zt)Td

dE R : VgU(zt)Td + uj(z) = 0, m=,...,m,, (4)
Vg,(2 5)Td + Uj( ) _ 0, 1 = m* + .... ,m.

The next iterate is given by
Z5+1 = Z5 + ikd5 ,

where dh denotes the solution of (4) and at a steplength parameter which will be discussed later.
A numerical drawback of using (4) is that all gradients of the constraints must be evaluated in
each iteration step, even if zk is close to the solution and we can suppose therefore that the
calculation of inactive nonlinear constraints is unnecessary. This statement is at least true if
we expect that nonlinear constraints inactive at the optimal solution, correspond to linearized
constraints inactive at a solution of (4). To avoid this situation and to improve the efficiency of
the algorithm, an alternative subproblem may be defined as follows:

minimize JdTBkd + VI(z)Td

dEM': Vj(z,)rd+g(zk){}0, JEJ , (5)
Vgj(zkW)Td+ g(z,) > o, j iE K.

J, and K* are two disjoint index sets with *UK - {1,...,m}. J- is called the set
*of the active constraints including the equality constraints, and K* is the set of the inactive

constraints. The indices k(J) _ k correspond to previous iterates and their definition will be
clear when investigating the algorithm.

To motivate the choice of the active set 4*, we observe that the algorithm approximates
not only the optimal solution by zj, but also the optimal Lar multipliers. The variables
corresponding to the Lagrange multipliers, are denoted.by % - (0), ... , v))T. A constraint is*



4 Convergence of a sequental quadratic progamming method

called active, i.e. its index is in J, if its function value is not positive or if the corresponding
multiplier is greater than zero. Given a constant e > 0 and any iterates sh and vh, we set

J; -M...m) U j:m. < m, j(tk) _< 6 or >) > 0),

K=1,..m) \ 4h.
If zh is feasible, vk is replaced by the optimal Lagrange multiplier of (1), and sufficiently

small, then 4h defines the constraints which are active at the optimal solution of (1). By using
the condition g (zk) < e instead of gj(zk) 5 0, we attempt to avoid the situation in which gj(zk)
tends to zero for j E Kh.

However, the linear constraints in (4) or (5) can become inconsistent even if we assume that
the original problem (1) is solvable. As in Powell [10], an additional variable 6 is introduced in
(5), leading to an (n + 1)-dimensional subproblem with consistent constraints:

minimize dT Bsd + VI(zk)Td + 1phg2

dE R",I ER: Vgj(z)Td+ (1- )g,(zk) {} 0, yEJ, (7)

Vj(z(x&)Td+ g,(zk) _ 0, j E K:,
0<6<1.

Obviously, the point do = 0, do = 1 satisfies the constraints of (7), since gj(zk) > 0 for
all j E Kh. We conclude that (7) has a finite unique solution provided that the matrix Bk is
positive-definite. The additional penalty parameter Ph can be chosen by

p s m ax Po, (1 - Ek,_1)d r _1B k _.dk.. ) ()

for k > 0 and a constant p' 1. A motivation for this rule is given by the convergence analysis
of Section 4. Here, A,%- I denotes the matrix

Now assume that we have succeeded in solving (7), giving us a search direction dk and a
multiplier uk = (u '),..., u())T. As mentioned above, the variables and the multipliers are
updated simultaneously by

k,+l = zk + akdk, Vl+1 - ek + Mk(Uk - elk).

The steplength parameter ak is obtained by minimizing a line search function or merit
function. Han [6] and Powell [10] used the non-differentiable Lj- penalty function

• P(X, r) -(s) + rs I i(X) I + rj I min(0,gj(s)) I (9)
-. j-l j-m..-1-

with r = (r,... ,r) r . The use of (9) alone can lead to two difficulties. First, the superlinear
convergence may be impeded even in an arbitrarily small neighbourhood of the solution (e
Maratos [9]). Second, the algorithm may cycle if the penalty parameters are chosen improperly
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(see Chamberlain [2]). To overcome these situations, (9) has been replaced by the differentiable
augmented Lagrange function in [13], i.e. by

*,(z, V) - f(X)- "E(.gj(Z)- rjy(z)2)- j V,/r,. (10)
jE J JEK

Here, the index sets J and K are defined by "

-{1,...,m U (i .<i m, g,(z) _< v1/ry}, (11)
K {1,...,m} \ J.

However, we must be very careful when replacing (9) by (10) in an optimization algorithm.
The difficulty arises that a solution of (1) is only a saddle point of the function 0, with respect
to the variables (z, v). In other words, a formulation of an optimization algorithm as a descent
method for 0, with a constant penalty parameter r can lead to a sequence (zt, v5 ) that tends to
infinity, even if the feasible region of (1) is compact. To avoid this undesirable behavior of the
algorithm, the penalty parameter in (10) must be adapted in an appropriate way and is defined
by

(... 2tn~tu( - V~h))2

r(1 - 5s)drBad I' j -l,...,m, (12)

where (d4, us) is a Kuhn-Tucker point of the quadratic subproblem, 6h the additional variable from
(7) (Ok - 1), rh the previous penalty parameter, tuk the current approximation of the multiplier
vector, and Bt a positive-definite approximation of the Hessian of the Lagrange function. The
function

+_a( d, (3
|- -- ---.- - -- with ..- (13)

{,.,mj U {,: tn. < ,<m n, ,i)~~ 'A;--- - ~ -~ _

K=m,) \ 4" .......

can be minimized with respect to a, leading to a steplength a.. We must distinguish between
the index sets J3, cf. (7), and 4A, cf. (14), which are both approximations of the optimal active
set of (1). It is easy to see that

,2JTJ , K *CK,,. (15)

The sequence {o(k)} is included in (12) to allow for decreasing penalty parameters at least

in the beginning of the algorithm, if we require that o( ) < 1. On the other hand, it should

guarantee the convergence of {r( ) whenever this sequence is bounded. A suffcient condition is
given by the following lemma.

(2.1)Lema Assume that (r(h) tis bounded, o( ) < 1 for aU k, and that

(Z--- ) < 1, _j~m.
5s0

Then there is a r; > 0 with

lim r(h) .k-.o =
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r To simplify the notation, we omit the index j and define R as the upper bound of the
penalty parameters. Assume that there are two different accumulation points r* and r** of {7 (k)}
with r* <r**. Then we obtain for each e > 0 infinitely many k and 4k with

I r(+'+") - r* 1: c, I r(") - r** I< e.

Setting I -- I and choosing a sufficiently small e > 0, we obtain

0< r** -r*-2
< ~-~- - _ r(k))

i-=0

Since this inequality is valid for infinitely many k and the right-hand side tends to zero, we get a
contradiction. I

A possible choice of r(h) could be

.1.

Since we expect that only large penalty parameters could affect the performance of the algorithm,
we can replace the above formula by a simpler approximation

_V J

= ii L).(6



The algorithmT

8. Th. a~gusftbm

Now we are able to formulate the algorithm. First, some constants e, j6, p, P, have to be
chosen that are not changed within the algorithm and that satisfy

The main steps consist of the following instructions:
(Mi) Algorithm :
0) Start: Choose some starting values zo E R', vo E M', Bo E al" x .20 positive-definite, pa E R,
ro E R'm, and evaluate I(zo), g1(ro), j1=1.. m, Vf (zo), Vgy(zo), j , m. Determine
J4 and let k~jj = 0 for all .j EK-0.

For k = 0, 1, 2,... compute zk+l, Vh+ 1, Bk+1, rhi+l, ph~i 1 and J+,as follows:
1) Solve the quadratic subproblem (7) and denote by 4h, 6h the optimal solution and by uk the
optimal multiplier. If 6h, > 6, let ph; ph and solve (7) again, If this loop fails within a given
upper bound for 6,,, define d h,(8

Uh V - V,.,A(Zk, V0).

2) Determine the new penalty parameter r,,+1 by (12) and (16). If 4k, uh have been obtained by
(18), let rAh I =rh
3) lfph'(O) !0, let ph -- Pup, and go to 1).
4) Define the new penalty parameter p,, by (8).
5) Perform a line search with respect to the function sph(ez) defined by (13). Let ak,o 1- and,
for i = 1, 2, . . ., let i,, be the first index for which

vhm 5 'P(0) + #Ck,aP,,,p(O), (19)

where eq~ = max(flak,j-.1, dkj~) Here, dh,sij is the minimizer of a quadratic approximation
Of Wh,(a) Using Vk,(0), V,,'(0), and (pA;(a*;,i-i). Define

1h ,ih.

6) Let
zk+l zjk + attdk,

VA%+1 Vh + aAh(UA; -V,,

and evaluate I(zA,+i), F,(Z,,+i), j, =1...,m, V! (zh+1), Jh by (6), and Vg,(zk+1), i E

7) Compute a suitable new positive-definite approximation of the Hessian of the Lagrange func-
tion, i.e. Bk,,+, set k _-k + 1, and repeat the iteration.

The following remarks will illustrate further details of the algorithm. Numerical experience
shows that the definition of the parameters satisfying (17) is not a crucial part for the performance.
Suitable values are

A stopping criterion has been omitted to facilitate the description of the algorithm. For a
suitable condition, one could use Powell's [101 proposal or any other rules, for example

d B,dk : E2,
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(> U()g(xk)<6

II V.L(zA, uh) 112 < 6,

Igi(zk) I+ 1 I min(O, gj(zk))! < v/.

The corresponding tolerance e, which must be provided by the user, could also be applied to
define the active set 4*, cf. (6). Here, e should be sufficiently small so that

0 < E < gj(z*)

for all j > m. with gj(z*) > 0 and for the optimal solution z*. If e is chosen too large, the only
disadvantage is that some additional gradient evaluations are required.

A user often has a suitable guess for the starting point zo. If nothing is known about the
multiplier and the Hessian of the Lagrangian, one could define vo - 0, Bo - I, and one could
set Po -- 1, r() -- 1, j = 1,..., m, or even larger, if a numerically stable algorithm for solving
the quadratic subproblem is available.

Numerical tests indicate that the penalty parameter ph in (7) could influence the performance
of Algorithm (3.1). For this reason, the numerical implementation [15] contains an additional
option to solve the quadratic subproblem (5) first, and to proceed to (7) only if (5) turns out to be
infeasible. Note that the convergence results of Section 4 remain valid if this option is preferred.
Furthermore, the choice of Ph by (8) is adapted to the current state of the algorithm to avoid
unnecessarily ill-conditioned matrices of the form

(!Bh 
0)

in the quadratic programming routine.
The loop in Step 1) of Algorithm (3.1) could fail only if the subproblem does not satisfy a

constraint qualification. In this case, the modified search direction (18) is used with the intention
of minimizing the augmented Lagrange function 0,.. The loop between Step 3) and Step 1) is
finite, since a lower bound for the choice of pk can be given, cf. Section 4.

When solving the subproblem (7) by any 'black box* quadratic programming subroutine,
one overlooks the fact that in a quasi-Newton implementation, the matrix B is updated by only
a rank-two correction. To improve the numerical efficiency of the algorithm, in particular, if only
a few constraints are active, one could use a Cholesky factorization of Bk. For a description
of the corresponding LDL-factors see [14]. Then the quadratic subproblem is identical with a
least-squares problem which could, for example, be solved by the programs published in Lawson
and Hanson [8].

The definition of the penalty parameter rt+1 is closely related to the algorithm presented in
[131. However, there are two differences. First, the penalty parameters are chosen individually
for each constraint, and second, bounded parameters are not expected to be constant as in [13],
so that the resulting algorithm should be more efficient and robust. Nevertheless it is possible
that rj+1 tends to infinity. The convergence analysis of Section 4 will show that in this case, the
convergence of Algorithm (3.1) can be proved without using a line search, which indicates that this
situation should occur rarely in practical situations. The specific choice of rt+ is motivated by
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the convergence requirement to generate descent directions for the augmented Lagrange function
*,, z. The parameter rt+l will be large when the improvement in the approximation of the
variables, i.e. d, will be smaller than the improvement in the approximation of the multipliers,
i.e. uh - vjt.

The line search procedure of Step 5) in Algorithm (3.1) is a very simple method and is justified
by the excellent numerical results obtained with the original implementation of Powell, cf. [12],
and in further tests, cf. [14,15. It is expected that only for badly scaled problems, this procedure
should be replaced by a more sophisticated algorithm, cf. for example Gill, Murray, and Wright
[3]. A straightforward classroom calculation shows that the quadratic approximation of ((a) is
minimized by the expression

a2  ()
i,= ak,, k() - (r,,(,) - k(o)) (20)

with
VA;(0) U Vdk . u--VA;"

It will be shown in Section 4 that Soh'(0) < 0, and that the line search algorithm is finite.
When investigating Step 6) of Algorithm (3.1), the choice of the variables zk(j) in (6) can be

explained. In the matrix defining the linear constraints of the subproblem, only those rows are
replaced in the k-th iteration step, for which i E Jh+. The others remain as the previously
computed gradients.

Finally, a suitable approximation of the Hessian of the Lagrangian must be found. The ex-
tensive numerical experience gathered in recent years shows that this Hessian can be approximated
by a variable metric formula with positive-definite matrices Bk, even if the true Hessian of the
Lagrange function is indefinite. Since excellent numerical results are obtained with Powell's
modification of the BFGS-formula, cf. [121, the usage of this formula or its equivalent inverse
formulation, if one wants to avoid the inversion of triangular factors, is recommended. For more
information about this variable metric formula, see Powell [101 or [14] for the definition of the
corresponding LDL-factors.
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4. Gobd onvergence analdyIs

The convergence analysis of Algorithm (3.1) depends mainly on the Kuhn-Tucker conditions

for the quadratic programming subproblem (7) which can be written in the following form:

a) BAdd + Vf (z) - E t,")Vg,(:,) - E ,(t)vgj(ZkW)= 0,
1E1~ JEK*

b) ph6k +E j uj)gj(X) k- V) + 1"h) V 0,
iEJ:'

C) W( *) = 0 , j M,. .,,

d) w( ) > 0 , j---m,+l,..m,

e) o < 6A _ 1, (21)
f) J9) > O, j -M--..,+M,

g) p'h) > o,h (;) > o,
h) "2>
i) W(.A), M = 0, j -- ,,

j) (0)6 = o,

k) ,.2)(1 - 6,) = 0,

where
-k) Vgj(zt)TdA + (1 - 6k)gj(za,), E J(2,2

wu4) - Vgj(z(j))Tdt + gj(zk), " E K*.

POO and Y(kI) are the multipliers with respect to the lower and upper bounds for the additional
variable 6.

First we have to investigate whether Algorithm (3.1) is well defined and start with considering
the internal loop of Step 1).

(4.1) Lemma: Assume that (7) satisfies the constraint qualification, i.e. that the gradients of the
constraints active at the optimal solution are independent, and that the feasible region of (7) is
bounded for each k. Then the loop in Step 1) of Algorithm (3.1) is finite.
Prooft To simplify the proof, we omit the iteration index k and assume that there are infinitely
many pi with lim,,,o pi = co, each giving a solution di, 6i of (7) and a multiplier ui. Since
6, > 0, we obtain from (21b)

0 > P,6,± EI U, )gj(:) Z> 1 : U( u 0 g(z)
jEj* JE.P

indicating that limi-.,, I ui 11= oo. If gff denotes the non-sero part of ui and A4 the matrix
consisting of the corresponding gradients Vg3 , we write (21a) in the form

Bd, + Vf(x) - Aszj = 0

or
ra = (A,'T )-1AT,(Bd, + Vf ()).

Since, however, {d.) is bounded, we obtain a contradiction. 3
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The boundedness of the feasible region in (7) will henceforth be assumed now in the further
global convergence analysis. The iterates zk can be forced to remain bounded, if additional lower
and upper bounds are given in (1), i.e. if there are jz, E 1W' with

zi z :5 zu, (23)

also implying the boundedness of {dt} provided that {a.} does not approximate zero.
The subsequent theorem will be fundamental for the convergence analysis. It shows that

the computed search direction is a descent direction for , i.e. that the line search is well
defined, and that it leads to a sufficiently large decrease of . First, some notation will be
introduced to facilitate the proof. If z%, v,%, J& are some iterates of Algorithm (3.1) and r%+, the
corresponding penalty parameter, we set

{ O , ifojE

0, otherwise

0, otherwise,

- (gl(A), . . ., (Zk)) r ,

l (#( ZA;1 ), .. Z : l { 'i(zA), if j E 4h, (24)
0, otherwise,

fg,(a), ifj EA,
ft AXk"" ,M ~zkn, |jIZ -( v(4)/r (5 ), otherwise

A - (Vgl(z),.. .,Vg,(z)),

R;+ - dig(4+1),..., r(+'))

Then we can express the gradient of ?,&+ 1(zA, u&) in the following form:

v ,,+ 1 (zk, k) = (VI(zA) - A(ok - Rt+IF)) (25)

(4.2) Theorem: Let z&, vt, dA, 4, uA, BA, rt, pk, and JA be given iterates of Algorithm (3.1),k > 0, and assume that

(i) drBkdtk y " IId 11 ot S 7 E R with 0 < 7 _1,

(in) pa > il A.ih fl .I(ktI)()<-' i I.(6PA (! -

Then
. [ d k :5) < y 11 d, 112• ( 2)

?ooft We use the Kuhn-Tucker conditions (21) for the quadratic subproblem and get (26) by the
following estimates, where we omit the iteration index k:
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= V1(z)Td + dTA(V Rg) + UIT(U-

= ELT~d - UVgy(Z)T d- 1: UVgj(k()TE
iE.P jEKO

+ ,(V, - ryg,(Z)),Vg,(Z)Td + , g3 (z)(ts3 - vj)
jEJ E

+ E, -j(u, - vj) d-. (21a),(24)
jEK r

= ELTBEL - F,(u - vj) 17gj(z)Td - F, u3 1 ,(zk(j,)Td
JEJ' JEK*

- VVg,(Z)Td - rjg,(z)Vgj(z)Td

+ E(uj - vj)gj(z) + E 1 ct.(15)vj
jEJ jEK ri(U

= dTBd j (uj - v,)wj + (15 (u, - v)gj(z)
3EJ* jEJ*

- ujaj + E ujg,(z) - E vjwj

+ (1 5 vjgj(z) - rjgj(X)u, + (1 - )~ rjgj(Z)2

jEJ*\J jEJ je'

+ E(Uj - vj)gj(z) + E l vj(u, - vA) cf.(22)
jEJ iEK ri

- dTBd + wj - rjgj(z)) + F wjv3 +2r - v,)g,(x)
EJjE.P\J ijJ

+ 1: (u, - t',)gY(Z) - 5 (u, - tv,)g,(z) + 1: Uorg(z)
i~*ijEJ* jEK*

F Vj,w+(1-6) F Vjg()+(-6)rrg(X)2
JEP*\Z ,EP*\l

+ ~ v(u, - VA) c.(21i)
JEK - -

>dTBd +2 F,(uj -v,)g 1 (x) + 2 E v~u v,)
~eJ EK r

vj(j - vy)+ Ej ujg,(z) - N (u-vj)gj(z)
JE tj jE1o\j J

+ E jjx i-6

-5~ vjgj(z) ct.(14),(21d)
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r~dTld + 21t(v Lo !(uj to j)...... VA

+ LJJz -jjz- 0d Diiz~Lu - j)j(z)
JC-J\K jP\ jel

+ E U,,(Z) + (1 -6) cf(15
iEKC JEJ

=d TBd + 2?(u _v) + EI u:(gz) - Ij) +

+ VjI u(A)±)+ 'r !i-.... Vug 3
YEK\K* Ti jEK\K' ?i jE\

- 6 j - V,),(Z) + (1 - 6) )2
.iEJ jE

d'Bd + 29t r(u - V) + (1 - OfTR, + E u,(g,(z) IV

+ ! - 6 ujgj(Z-) -

> dT Bd + 2I(u - v) +-(1 _ ),rR R+ (1-6

-6~ujg,(z)+6Fvjg(z) d.(210),(14)
iEJ'. iEJ

> dTBd + 2 1T-r +( 6) VTRt + p#2

-V1'6 + 6,rg- 6D cf.(21b,d)

- TBd+ 11V ./7RIaV + 1___ -v j

+ O(Ort- 1 6..r) cf.(21j)

> drBd 1 (-)RIUV
1-6 ____

+ (W'j + _(j 1 -4,r, 1 *VJ

idrBd + jdTBL - 1 ( -v)rR-1(u - )

4p 15
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> l, I1 d tl2 +ired -  (- , r -

- !-J(@2.....2 cf.(i)
4p 1.

_1 a _, 1 - 5)t"Bd. ,

> ld 112 +idTBd 1 (1 - t)2t ( - ,Je2

1 (g((E - c)- ).(12)

4p(1-

I= l7IId II- 4p1 -c)(fA~,2 .(22)
4 p ( 1 - 5 ) 2 ( VT A T E O 2

> 7 11 d I2 .4(1 - 1)2 II AV A2 11211 d 112 cf.(i)

>- F II d II2. cf.(i),(i)

During the proof we used v(.') > 0 for all j > m., since aA-1 _5 1, and we set

R1/ 2 ' diag(/,..., r-.).

Assumption (i) can be considered as a standard assumption henceforth required in the theory
of quad-Newton algorithms. It can be forced by choosing a y and performing a restart with
Bk = I whenever (i) is violated. The validity of assumption (ii) is guaranteed by Step 1) of
Algorithm (3.1), since Lemma (4.1) shows that after finitely many sub-iterations, the condition
6% ("will be achieved at least under a constraint qualification. Otherwise, d4 and uk define
a descent direction for #k+l in the case when they are replaced by (18). To avoid expensive
calculations for obtaining the lower bound (iii) of the penalty parameter, Ph is defined by (8),
since

d T_-,,_..i = d*4_ 1Bk-1d4. -+ d4_.Vf(zhi). (27)

and all inner products are previously computed in the algorithm. Furthermore, the lower bound
in (iii) does not depend on dt, u,%, or ph, which implies that the loop between Step 3) and Step
1) of Algorithm (3.1) is finite.

(4.8) Coreelr: The loop between Step 3) and Step 1) of Algorithm (3.1) is finite.

To show that the line search of Step 3) of Algorithm (3.1) defines a finite sub-iteration, we
use the following estimate for a,,j:

(4.4) Lemmo Let k denote the k-th iteration of Algorithm (3.1) and &ume that Vh'(0) < 0.
Then

ah,,+i<_ maZ(, 2(1 p))ah' (28)

whenever (19) is not valid for some i > 0.
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Fresh From pg.'(0) < 0 and the violation of (19), we obtain

= a|,,po.'(0)

< Iz....# ..' o) -/ iso .'(O)
1

--2(1 -/)Oke(I

cf. (20), and

a~.'i max(~ 12(1 -

U

Since oa.j - 0 for i -c oo and rop'(0) < 0 is impossible without violating (19), we get:

(4.5) Corellary: The line search procedure of Step 3) of Algorithm (3.1) is finite provided that
'gh.(0) < 0.

Now we are able to prove the following convergence theorem:

(4.6) Theorem: Let zk, vt, d4, Oh, uh, Bh, r., pt, and J* be given iterates of Algorithm (3.1),
k > 0, and assume that there are positive constants y and 5 with

(i) d4gd . y 11 dh 12  for al k,
(i) 6k < for ai k,
(Mi) P> IAkah III

-l P ( --g. 2 for all k,

(iv) {zh}, {fdt}, {tu}, and {Bg} are bounded.

Then there exists for each E > 0, a k with

a) 11 dh 11 e,

b) 11 R-12(ug - tig) 11 < 9.

Proofs First note that the boundedness of {uj} implies the boundedness of {t}, since at < I

for all k. To show a), let us assume that there is an e > 0 with

IId II > (29)

for all k. From the definition of rk+,, k > 0, we obtain either rh+') - 4°O)40) or

2m't')
r (+1) <

2m(u() - )
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for some k* < k, j = 1, ... ,m. Since uk and therefore also vt are bounded, we conclude that

{rA} remains bounded and Lemma (2.1) implies that there is some r > 0 with

lir ri- = r. (30)
&-.o

Now consider any iteration index k. Then

#, &+ (2k+ i .V. + ) ! + Th+ ( kI. t, + pa h VbV.+ (Z A , V )1 () dk )
!5 O.h+&(z, V) - #k II dk 112 (31)

< Or& 1 Z; *) - A-C2Ok

cf. Theorem (4.2). Next we have to prove that a, cannot tend to zero. Let k > 0, and

At= (k ) (32)

Since all functions defining 0, are continuously differentiable, rk+j is bounded, and z&, P* remain
in a compact subset of RR+m, we can find a > 0 with

I v ,+i(zk + ~,P)rPk - V,.+j(Z)rph) I
11 V#,,,1 (Z1 . + aph) - V#,+,(Z) 111i P's H (33)

< j(j _ jA),

for all a < a and for all k. Using the mean value theorem, we obtain a G' E [0,1) with

*75I +.(Zh + (Ap's)P - J?+~h a~~,z' hla)~ pVO',h+(z')Tpkt

< aV#,.+,(zk)TpAs + ja(1 - 0)eC - paV#r.+.(')TP' ef.(33)

< - _,Mv 11 d,% 112 +.a( - ,) cf.Th.(4.2)

< -,(j(j - )yE2 - (l - ), 2) cf.(29)
= -ja(l - ),e

<0

for all k and all a < . From (28) we conclude

for all i > 0, where
0] - max(, 2(1 IA) ) , 0 <,<I.

Therefore, there is an io independent from k so that (19) is satisfied for all i > io and all k. Since
is' is the first index for which at,j satisfies (19), we conclude that ac does not approach sero, i.e.

S= .,, > pI > P'.
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Together with (31) we obtain

with (* + 1) < #F6+.(,) - 2 (34)

-. with
• I - (1 - ,)vEP'.

Now we consider the difference

= , . +) +-,,(z+l) - &r ,4+2l J(Zk+1) 2) - + /rJh+2)j E',

+ 1 (,+(() - 14h+1)-u t+o2) + I V ..(k+1)2 /rk+1)

With

j+1 -- {1, .. , m.} U {j m, < < m, rj(zA;+i) < V(h

jk {1, .,M), .) {j:m. <j m, f,(zk+l) < (k+l)/r(A+l)}

and Kk,+j, K, are the corresponding complements. Since rk+l - r > 0 for k -. oo, g.,(Zk+1)
and vk+1 are bounded, we get

p. .z,+ - v.+(h +1) <

for all sufficiently large k. This leads to

+I,p,,+(s +: _.,,.(',+i) + r _ ,p,.,,z, -

cf. (34), for all sufficiently large k and to a contradiction, since {#,,+,(zk)} is bounded below.
This shows statement a). Statement b) follows from a), the definition of rk+l, cf. (12), and the
boundedness of {Bs}:

11 k + 1 ( u - " ) 112 - I ~ h

. (1 - 6k)drBdk

2mnJ==l

Note that Theorem (4.6) also treats the case in which the penalty parameters are unbounded.
* In that case, the convergence analysis is simplified, since definition (12) of the penalty parameters

and the boundedness of {tu}, {u(u} imply that (d4) approaches zero. If, on the other hand, we
knew that the penalty parameters are bounded, then (12) shows that the statement

fl, - VA, II 1



iS Convergence of a sequential quadratic programming method

could be added to the results of Theorem (4.5).
Most of the technique in the convergence proqf of Theorem (4.6) is standard and well known

from unconstrained optimization theory. It is repeated here for completeness. However, we must
be aware that

O.h+.(zh+1) > *.*+ 1(zk+i)

is possible, implying that convergent penalty parameters are required to obtain a contradiction
to (29).

The statements of Theorem (4.6) can be used to show the approximation of a Kuhn-Tucker
point by Algorithm (3.1):

(4.T) Theorem: Let zk, vj,, d, Ok, uh, B,, 4h be computed by Algorithm (3.1) and assume that
all assumptions of Theorem (4.6) are Yalid. Then there exists an accumulation point (z*, u*) of
(zh, uk) satisfying the Kuhn-Tucker conditions (3) for problem (1).
Proof: The boundedness of {zk}, {uk} and the results of Theorem (4.6) guarantee the existence
of z* E I", u* E m, and an infinite subset S C M with

lim Zk = Z*,
kES
lir Uk = U*,
keS
lim d = 0, (35)
kes
lir 11 R - 2 (u - uk) 11= 0.
kES

Since {6, is bounded away from unity, (22) and (21c,d) give

gj(z*)=o, y=1,.-.,m,

g.(z*) > ,, + 1..,m,

showing that z* is feasible. From (21f) we get

and (21i) leads to

u;gj(z*)=o, j=1,...,m. (38)

It remains to prove (3a). Assume now there exists a j > m. so that . E K* for infinitely many
kE S (otherwise we are finished). The definition of K, cf. (6), implies g,(z*) > e and (36) gives
u= 0. We conclude from (21a) that

V.L(z*, u*) = 0.

I

The following corollary follows directly from the statements of Theorems (4.6), (4.7) and from
(21b).
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(4.8) Cmelmp Under the assumptions of Theorem (4.7), let S define an infinite subet of i so
that (z, uh) converge to a Kuhn-Tucker point (z*, u*) of (1) for all k E S. Then
a) limkes 61 =0.
b) Ui, in addition, the penalty parameters rt are bounded, then

lim V -= U*.
keg

Assumptions (i) to (iii) of Theorem (4.8) ae required to obtain descent directions for the
function 0r- As noted in the beginning of this section, the boundedness of {z+} and {d+} can be
enforced by introducing additional bound constraints of the type (23), and sufficient conditions for
{uh} to remain bounded, are given in [13]. They are mainly based on a constraint qualification
which must be satisfied in each subproblem. The assumptions of the convergence theorems
presented so far exclude the special cue that a search direction has been obtained by (18). It
can be expected that this replacement occurs rarely if the nonlinear programming problem (1)
satisfies a constraint qualification at its optimal solution. If, on the other hand, (18) is always
used to define the new iterates, then (3.1) could be considered as a multiplier method and its
well-known convergence results can be applied.
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5. Further comments

In addition to the global convergence behavior outlined in the previous section, one could be
interested in the local convergence speed of Algorithm (3.1). The only statement to show is, that
the steplength is one in a neighbourhood of the solution. Then (3.1) is identical with the original
method of Han and Powell and we can apply their local superlinear convergence results, cf. [5]
or [11], respectively. However, Algorithm (3.1) is closely related to the method presented in (13].
The only difference influencing the local convergence analysis is a slightly simplified choice of the
penalty parameters. Since both approaches are identical in principle, a repetition of the local
convergence analysis of [13] for the presented modified case is omitted.

Algorithm (3.1) has been implemented in a user oriented way and has been tested extensively.
The usage of the program and its FORTRAN source are published in [15]. The numerical results
of [15] are obtained by executing the test problems published in Hock and Schittkowski [7], and
can be compared with the results given there. The subproblems of the kind (5) or (7), respectively,
are solved by the quadratic programming routine of Gill, Murray, Saunders and Wright [4] and
by a linear least-squares program based on the subroutines published in Lawson and Hanson [8].
Furthermore, the Li-penalty function has been implemented to compare both approaches, and
two different line search algorithms are tested.

For further information about the numerical performance of other versions of Algorithm
(3.1), the reader is referred to [14]. Five different versions of the method of Wilson, Han, and
Powell are tested there which all realize the active set strategy and are based on a least-squares
formulation of the quadratic subproblem. They differ in the choice of the line search function,
the formulation of the subproblem, the solution method for the least-squares subproblem, and in
the way in which the gradients are computed. Furthermore, the-r performance can be compared
with the performance of the 26 optimization programs tested in [12], and, in particular, with
the original implementation VF02AD of Powell and with OPRQP/XROP, two versions of Bigg's
[1] recursive quadratic programming method which uses an active set strategy to define equality
constrained quadratic programming subproblems.

iL
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